Kolmogorov type inequalities for hypersingular integrals with homogeneous characteristic
نویسندگان
چکیده
منابع مشابه
General Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملgeneral minkowski type and related inequalities for seminormed fuzzy integrals
minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. also related inequalities to minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. several examples are given to illustrate the validity of theorems. some results on chebyshev and minkowski type inequalities are obtained.
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولWeight Inequalities for Singular Integrals Defined on Spaces of Homogeneous and Nonhomogeneous Type
Optimal sufficient conditions are found in weighted Lorentz spaces for weight functions which provide the boundedness of the Calderón– Zygmund singular integral operator defined on spaces of homogeneous and nonhomogeneous type. 2000 Mathematics Subject Classification: 42B20, 42B25.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Journal of Mathematical Analysis
سال: 2007
ISSN: 1735-8787
DOI: 10.15352/bjma/1240321556